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Semi-analytical solutions of the Schr6dinger equation for a particle moving in the electrostatic 
field of two other particles a fixed distance apart, are derived in such a way that the resulting matrix 
eigenvalue equations contain real symmetric band matrices. Numerical techniques appropriate to the 
solution of the two simultaneous matrix eigenvalue equations are described; in particular the bisection 
method is used to determine precisely the significant truncation order of the matrices for a given 
numerical precision. 
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1. Introduction 

The two-centre problem in wave mechanics [-1] arises when the Born-Oppen- 
heimer separation [2, 3] is applied to the internal motion of three electrostatically 
interacting particles [4, 5]. Most of the previous work has been concerned with 
obtaining solutions for the specific case of the hydrogen molecule-ion [6-27].  
The Schr6dinger equation is separable in confocal elliptic co-ordinates [ l ,  5], 
and all of the precise calculations have been based upon semi-analytical solution 
of the separated differential equations by the method of Frobenius. An inherent 
disadvantage of this procedure is that the differential operators are not in general 
hermitian [28], so that spurious complex-energy eigenvalues may arise in numeri- 
cal work, and the algorithmic techniques applicable to hermitian (real symmetric) 
matrices cannot be used [29]. This has been noted previously [30]. 

This paper is concerned with the derivation of semi-analytical two-centre 
Coulomb wavefunctions based upon hermitian differential operators. The general 
technique to be followed is the hybrid Frobenius-Ritz method described previ- 
ously [30]. This hybrid method produces a hermitian matrix eigenvalue equation 
from the algebraic (non-integral) method of Frobenius, by a transformation 
involving the overlap integrals of the basis functions. 

2. Parameterisation 

The wave equation for the motion of a particle (mass m 3 ; charge e3) in the 
electrostatic field of two other particles (masses m 1, mz; charges e 1, ez) a fixed 
distance R apart, written in confocal elliptic co-ordinates 2,/~, co and in ]~2-e'- 
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Rydberg units [4], separates into three ordinary differential equations: 
dZQ 

dco~- T +reef2=0  0<co < 2re ; (1) 

3 0A { m 2 } 
~32 (22 --1) ~ - -  + A--p222 22 ~ + R 2 ( l + q )  A = 0  1 < 2 < o o ;  (2) 

0 1 )~M{__  #~=1m2 )} c3#(/t 2 -  - ~ - - +  A - p 2 #  2 + R p ( 1 - q  M = 0  - 1 = < # ~ + 1 .  (3) 

The separation constants are m and A. q is the charge ratio ez/e a. p is related to 
the energy E by: R 

p = ~ -  ( - E )  a/2 . (4) 

The proper solutions of (1) are well known (Eq. (5) of [5]). 
For bound three-particle states (E < 0) one of the particles must have the 

opposite sign of charge from the other two particles, so that without loss of 
generality in the application of the Born-Oppenheimer separation, the particle 
labels may be chosen so that el e3 is negative [4]. This is implicit in the l~2-e'- 
Rydberg system of units. Thus the charge ratio q may be positive or negative. 

The charge ratio q may be restricted to the range - ~  < q < + 1 by the fol- 
lowing considerations. New variables q',. R', E', p', 2', #' may be defined by: 

q'= l/q; R'=qR; E'=E/q2; p'=p (5) 

2 ' = 2 ;  # '=  - # .  

Replacement of the original variables by the primed variables according to (5) 
leads to an identity transformation of Eqs. (2) and (3). Thus the solutions A, M, 
for Iql > 1 are related to those for Iql < 1. In particular the two principal param- 
eters A and E are related by: 

A(R, q)= A(qR, l/q) 

E(R, q) = q2 E(qR, i/q). (6) 

The transformation # '=  -/~ is Of no consequence because of the symmetric range 
of #, - 1 =<#= + 1. Apparently one could restrict q to the range - 1 =<q_< Ii 
However for negative values of q, the transformation (5) changes positive R into 
negative R'. Thus in order to retain the distance R as a positive parameter, q is 
allowed the range - ~ < q =< + 1. Thus Eq. (6) are only practically useful for q > 0. 

3. The ,u Equation: q --- 1 

This special case of q = 1 is straightforward. Following previous developments 
[1, 5, 12] M(/~, R) is expanded in terms of associated Legendre polynomials Pff(#) 
[31] according to Eq. (10) of [5]. Application of Frobenius' method leads to a set 
of homogeneohs linear equations for the coefficients fk(R) represented by the 
matrix equation [5, 32]: F . f= Af .  (7) 

The elements of the vector f are the coefficients {fk ; k > 0}, and F is a tridiagonal 
matrix, whose elements Fjk are given by Eq. (12) of [5] for the case of q = 1. 

It is apparent from this equation in [5] that the matrix F is not symmetric, 
so that the eigenvalues A of Eq. (7) are not necessarily real. Equation (7) may be 
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transformed into a symmetric matrix eigenvalue equation through the diagonal 
overlap matrix S of the Legendre polynomials. The elements of S are given by [31] : 

+1 2(2m+ s + 2k)! k >O & ~ =  ~ m 2 - (8) 
[P=~+s+2k(#)] d # =  ( s+2k) l (2m+2s+4k+l )  s = 0  or 1 

- 1  " " 

A diagonal square root matrix U is defined to have elements: 

Uk k = [Skk ] 1/2. (9) 

Equation (7) is transformed into the symmetric tridiagonal matrix eigenvalue 
equation: 

where F' and f '  are defined by: 
F' f '=  A f '  (10) 

F ' = U F U  -1 (11) 

f ' =  U f . (12) 

Thus diagonal elements of F' are the same as those of F: 

Fkk = Elk -= --(m + s + 2k) (m + s + 2k + 1) 

p2 ( (s + 2k) (2m + s + 2k) 

+ (2m+2s+4k+l )  ~ ~ - m + 2 ~ Z ~  + 

and the co-diagonal elements of F' are: 
p2 

G + I  = F ~ + I ~ =  
(2m + 2s + 4k + 3) 

. I ( s+  2k+ 1)(s+ 2k + 2)(2m+s+ 2k + 1)(2m+s+ 2k + 2)] 1/2 
(-2~m q-27+ 4 ~  -l)-(2m -7- 2s+-4k-+ ~ ] 

The elements off '  are related to those o f f  by: 

(s+ 2k+ 1 ) (2m+s+2k+  1)} 
( 2 m + s + 4 k +  3) 

03)  

k~O.  

2(2m+s+2k)! _[1/z 
f / '=Ukkfk= ( s+2k) ! (2m+2s+4k+l )  fk (14) 

s = 0 or 1 for M (#, R) an even or odd function of #. 

4. The p Equation: q ~ 1 

Solutions of Eq. (3) for the general case of q H 1 have been sought in previous 
work in one of three forms: [1, 5, 14, 24, 26, 27]. Two of these forms involve a 
factor exp(_+p#) in M(g, R). This exponential factor is important in the direct 
application of Frobenius' method [1, 14, 27] since it leads to a three-term re- 
currence relation to which the theory of infinite continued fractions [33] may be 
applied. However the expansions of M(#, R) including the exp(+p#) factor lead 
to a non-sparse overlap matrix, so that they are not suitable for application of the 
hybrid method. Following previous work [-5] the method adopted for q ~e 1 is a 
straightforward expansion of M(#,R) in associated Legendre polynomials 
(Eq. (10) of [5]). The procedure is similar to that for the case q = 1, except that 
the M(#, R) are no longer even or odd functions of #, and the term R#(1-q)  
is no longer zero. The F matrix in this case is unsymmetrical and pentadiagonal 
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(Eq. (12) of [5]). The diagonal overlap matrix S is essentially the same as in the 
case q = 1 (Eq. (8)) except that both s = 0 and s = 1 elements occur together. 
The algebraic details of the hybrid method for this case are recorded elsewhere [32]. 
The resulting symmetric pentadiagonal matrix F' has elements: 

p2 { k(2m+k) (k+l ) (2m+k+l)}  
F ; ' k=- (m+k) (m+k+l )+  ( 2 m + 2 k + l )  (2m+2k-1)  + (2m+2k+3) 

, (_ (k+ l ) ( 2 m + k +  1) 11/2 
F[,k + 1 = F[, + l k = R(q -- 1) [ (2m + 2k + 3) (2m + 2k + 1) J (15) 

p2 [(k+l)(k+Z)(2m+k+l)(Zm+k+2)]l /2 
F['k+Z=F/'+zk-- (2m+2k+3) (2m+2k+ 1)(2m+2k+5) k > 0 .  

The symmetric matrix eigenvalue equation has the same form as (10) with F' 
given by (15); the elements of f '  are related to the coefficients fk by: 

[ 2(2re+k)' ] ~/z 
J~= k !  (2m+Zk+ 1) fk. (16) 

5. The ~ Equation 

Semi-analytical solutions of Eq. (2) have been presented previously by 
Hylleraas [8] and Jaff6 [-9]. The first step in both of these solutions is the removal 
of a factor (22-  l)m/Z: 

A(2, R) = (22 -- 1) m/2 N(2, R). (17) 

The differential equation satisfied by N(2, R) is: 

d 2 N dN 
(22-  1) d22- +2 (m+ l)2 

d ~  (t8) 
+ [m(m+ 1)-p222 +R2(1 + q ) ] N =  - A N .  

Jaff6's solution involves an irrational factor (2 + 1) ~, and a power series in 
(2 - 1)/(2 + 1). Thus the overlap integrals cannot be evaluated analytically, and the 
overlap matrix is non-sparse (no zero elements). Therefore the Jaff6 form of semi- 
analytical solution is not suitable for the application of the hybrid method. It is, 
however, interesting to note that the equivalence of the Jaff6 and Hylleraas 
expansions has been proved by Helfrich and Hartmann [-20]. 

Hylleraas' solution expands N(2, R) in terms of the associated Laguerre 
polynomials L~+k(x), where the variable x is related to 2 by: 

x = 2p(2 - 1). (19) 

This change of independent variable changes the range from 1 < 2 < 0o to 0 < x < oe. 
It also makes the correct asymptotic form of N, exp(-p2) or exp(-x/2), the 
appropriate weighting factor for the Laguerre polynomials. Thus Hylleraas' 
solution has the form: oo 

N = exp( -  x/2) ~,, ok(R) L'~(x). (20) 
k=0 

Substitution of (20) into (18) followed by application of Frobenius' method 
employing the algebraic properties of the associated Laguerre polynomial s L]' 
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[34], leads to a matrix eigenvalue equation [1, 5, 26, 27] : 

G ' g =  - A g .  (21) 

The elements of the vector g are the coefficients 9k in (20) and the elements of the 
tridiagonal matrix G are, in our notation: 

Gkk : 2k(a - 2p - k) - p2 d- m(m + 1) + a(m + 1 + 2p) 

Gkk+ 1 = (k + m + 1) (k - m - a) (22) 

G k + l k = ( k J r  - 1) ( k -  a) k__>0 

where the parameter a is defined by: 

R(1 + q )  1 + q  
a -  m - l - - -  r n - 1 .  (23) 

2p 
It is apparent from (22) and (23) that when m = 0 or q = - 1, the G matrix is 

symmetric. Thus in these special cases Hylleraas' solution produces a symmetric 
matrix eigenvalue equation by direct application of Frobenius' method. This 
circumstance arises when m = 0 because the Laguerre polynomials are normalised 
when m = 0: that is the overlap matrix is simply the unit matrix in this case. 

6. The ~ Equation: m > 0 and q ~ - 1 

This case presents a problem somewhat similar to that encountered when the 
factor exp(•  is introduced into the solutions M(#,R) of the # equation 
when q ~ 1 (Section 4). The problem for the 2 equation is created by the introduc- 
tion of the factor (22-  1) '~/2 (Eq. (17)). The differential operator in Eq. (18) is 
only hermitian when m -- 0. The operator may be made hermitian by pre-multipli- 
cation by (22 - 1) m or [x (x  + 4p)] m. However the associated Laguerre polynomials 
are not orthogonal with respect to the weighting factor [ x ( x + 4 p ) ] m e x p ( - x ) ,  
so that they are not the appropriate orthogonal basis functions for the case m ~ 0. 

After considering possible alternatives we concluded that direct application 
of the Ritz variational method utilising the Hylleraas expansion (17, 20), is the 
most suitable procedure for the production of a symmetric matrix eigenvalue 
equation from the 2 equation when m > 0 and q ~ - 1. The essential distinction 
from Frobenius' method is that the orthogonality of the Laguerre polynomials 
is employed rather than their linear independence [34]: 

~ e x p ( - x )  x m L'~(x) L'~(x) dx  = ~k~ X (24) 
(m + k) l 

o k] 

The general procedure is as follows. The HyUeraas expansion (20) is substituted 
into (18), and the derivatives of L~ and powers of x removed by use of the algebraic 
properties of the Laguerre polynomials [34] just as in Frobenius' method (Sec- 
tion 5). The resulting equation is then multiplied by [x (x  + 4p)] m exp(-x /2)  to 
make the operator hermitian, so that (18) becomes: 

exp(--x) [x (x  + 4p)] m {L'~ [2k(a - 2p - k) - p2 + m(m + 1) + a(m + 1 + 2p) 

+ L'~+ l[(k + 1) (k - a)] + L'~_ 1 [(m + k) (k - m - 1 - a)]} (25) 

= e x p ( -  x) [x (x  + 4p)] m { - A L ' ~ } .  
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This equation is multiplied by L~ and integrated d x  . The left hand side of (25) 

produces the hamiltonian matrix element Hjk , and the right hand side the overlap 
matrix element Sjk. The eigenvalue equation is: 

H g  = - A S o  . (26) 
The matrices H and S are both symmetric band matrices. The matrix elements H;a 
and Sjk are evaluated by expanding (x + 4p)mL'y and subsequent removal of the 
powers of x by the recurrence relation between the Laguerre polynomials [34]. 
This procedure is recursive for increasing values of rn in the sense that (x + 4/7)" + 
= (m + 4p)(x + 4p) m. The non-zero matrix elements are then determined by (24). 

The overlap matrix S has rn co-diagonal 'bands, and the H matrix m +  1 
co-diagonal bands, above and below the principal diagonal. Thus the structure 
of the matrices depends upon m, so that it is not possible to formulate the matrix 
elements for a general value of m. 

7. The 2 Equation: m = 1 

For the specific case of m = 1 the tridiagonal overlap matrix S, and the 
pentadiagonal hamiltonian matrix H, have the following elements. 

Skk = 2(k + 1) (2p + k + 1) 

S k k + l = S k + l k  = - ( k +  1) (k+ 2) k > O  (27) 

Hkk = 2(k + 1) ((2p + k + 1) [2 + 2~(p + k + 1 ) -  p2] + ~(k + 1) 2 
- k[4p(2p + 2k + 1) + 3k(k + 1)]} 

Hkk+ 1 = Hk+ lk = (k + 1) (k + 2) {4k(2p + k + 1) - [2 + 2a(2k + 3 + 4p) - p2]} 

H a k + 2 = H k + 2 k = ( k +  1 ) ( k + 2 ) ( k + 3 ) ( a - k )  k > O .  (28) 

Transformation of (26) to the standard eigenvalue form: 

G'g' = - A g' (29) 

is best done by the numerical square-root (Choleski) method [35], since despite 
the sparse structure of H and S, the G' matrix is non-sparse. An alternative method 
has been given recently by Crawford [36]. 

8. Numerical Techniques 

For given values of the parameters q, R, and m, the numerical problem is to 
solve the two eigenvalue Eqs. (10) and (21) (or (29) if m > 0 and q # - 1) simulta- 
neously. That is one must find a value of the energy E (upon which the F' and G' 
matrices depend), such that the required eigenvalue A n of (10) is the same as the 
required eigenvalue A~ of (21) [or (26)] to the prescribed precision. 

The eigenvalues A u and A~ are determined by firstly transforming any non- 
tridiagonal matrices to symmetric tridiagonal form by Householder's procedure 
[29, 37]. The required eigenvalues of the tridiagonal matrices are then determined 
by the bisection procedure [4, 29, 38]. This procedure has the advantage over 
alternative procedures, that one can specify which eigenvalue is determined. 
In terms of united atom quantum numbers n, l, m, the required eigenvalue of (21) 
or (26) is the (n-l)th, and that of Eq. (10) the ( l+ 1 - m )  th [5, 12, 17, 27]. 
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The bisection procedure also has the advantage that the numerically signifi- 
cant order of the matrices for the determined eigenvalue is obtained as a secondary 
result of the calculation [32, 39]. The numerically significant order applies to 
the eigenvectors 0' or f ' ,  so that the precise order at which these in principle 
infinite order vectors should be truncated is determined. 

The iteration towards a value of E such that A, = A~ has been described 
previously [5], with the modification in the light of this new work, that the 
significant orders of the G' and F' matrices are employed to considerable speed 
up the iteration procedure. With this modification the computing time involved is 
comparable with that claimed by Power in some recent computational work 
based upon the traditional unsymmetrical tridiagonal matrices [27]. The use of 
symmetric matrices, and the bisection method, has the advantage over previous 
methods that iteration towards a specific solution n, l, m, for any given value 
of R, is assured. In previous work one had to change R in small steps, beginning 
at R = 0 (or R ~ oo) where E is known analytically. When two potential curves 
are close together at certain values of R, this traditional method does not always 
converge to the required solution [5, 27]. 

In our experience the eigenvectors 0' and f '  of the tridiagonal matrices can be 
accurately generated by forward substitution [29, 32]. For this reason, and also 
because most of the computing time is taken up with iterating towards self- 
consistent values of A and E (including the iterative bisection procedure), two 
centre wavefunctions can conveniently be tabulated as self-consistent values of A 
and E for specified values of the parameters R, q, n, l, m, together with the significant 
orders of the 0' and f '  vectors. If the elements of these vectors are required in a 
subsequent application of the tables, they can easily be computed from the 
formulae for the F', G' (or H) matrix elements. This evaluation of the vector 
elements is a non-iterative numerical procedure. 

9. Convergence of the Expansions 

The significant order of the f '  vector increases with increasing intercentre 
distance R. Typically for 12-digit precision in A and E, the significant order of f '  
will be 3-10 at R ~  1, and 20-40 at R ~  50. Although the significant order off' 
is quite large at large values of R, there is no problem in practice of obtaining the 
required numerical convergence. 

Reciprocally the significant order of the 0' vector is small at large values of R 
(R ~ 50) and large at smaller values of R (R ~ 1). For positive values of q, 0' also 
coverges rapidly at very small values of R (R < 0.1). For negative values of q, and 
in particular for q = - 1, the O vector does not really converge for R <  1. This 
slowly-convergent situation is associated with a tendency for the energy E to 
approach zero. In particular for q = -1 ,  bound states of particle 3 within the 
dipole field only exist for R larger than certain critical values [25, 40-42]. This 
slowly-convergent situation is not likely to be a serious problem in applications, 
because at small values of R for q < 0, the potential energy between Particles 1 
and 2 is dominated by their Coulomb attraction: the contribution from the 
averaged motion of Particle 3 is relatively small at small values of R. 
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